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Abstract

Agent-based modeling is a long-standing but underused method that allows researchers to simulate artificial worlds for hypothesis
testing and theory building. Agent-based models (ABMs) offer unprecedented control and statistical power by allowing
researchers to precisely specify the behavior of any number of agents and observe their interactions over time. ABMs are
especially useful when investigating group behavior or evolutionary processes and can uniquely reveal nonlinear dynamics and
emergence—the process whereby local interactions aggregate into often-surprising collective phenomena such as spatial segre-
gation and relational homophily. We review several illustrative ABMs, describe the strengths and limitations of this method, and
address two misconceptions about ABMs: reductionism and “you get out what you put in.” We also offer maxims for good
and bad ABMs, give practical tips for beginner modelers, and include a list of resources and other models. We conclude with a
seven-step guide to creating your own model.
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From Detroit to El Paso, New York to Los Angeles, urban

environments are divided by race and ethnicity. The pernicious

consequences of segregation lead us to infer pernicious causes:

People must live in homogenous neighborhoods because they

are racist. This explanation for segregation seems plausible,

as prejudiced individuals do avoid people of other races—but

it assumes that the collective behavior of neighborhoods can

be explained similarly to the behavior of individuals. Almost

40 years ago, Thomas Schelling (1971) challenged this

assumption, asking whether segregated neighborhoods would

form even when individuals had no prejudice, and only wanted

a few neighbors similar to themselves.

Schelling placed red and green pennies on a chessboard to

represent people in neighborhoods. People were happy—and

remained in their square—if they were surrounded by at least

30% of their “color”; if this number dropped below 30%, how-

ever, people became unhappy and moved to a new square.

Schelling played out this model by moving pennies one by one

until each person on the board was happy, by which time the

board was highly color segregated. At higher (75%) or lower

(15%) thresholds of similarity, segregation was more or less

pronounced (see Figure 1 for an illustration of these effects),

but the key is that even individuals who embraced high diver-

sity could still end up segregated.

Schelling’s work is an elegant testament to how simple and

innocent individual preferences can produce surprising societal

outcomes over time. His model also serves as a prototypical—

if low-tech—example of the power of agent-based modeling

(ABM)1 in understanding emergent social behavior.

Agent-Based Modeling

Agent-based models (ABMs) are computational simulations in

which artificial entities interact over time within customized

environments. These entities (agents) are programmed to repre-

sent humans who behave in precisely specified ways. As sum-

marized by Macy and Flache (2009, p. 247), agents are

adaptive in that they respond to their environment through

learning and evolution and are autonomous in that they control

their own goals, states, and behaviors. They are also intention-

ally simplified, usually following only one or two basic rules
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(representing habits, norms, or preferences) throughout the

simulation.

The outcomes of ABMs, however, are anything but simple.

A well-programmed model offers insight into how local inter-

actions between agents can lead to complex group- and system-

level phenomena. Consider how a single bird’s tendency to

align and remain close (but not too close) to her peers can cre-

ate a swirling flock that appears to be moving with a collective

mind (Reynolds, 1987) or how predator–prey interdependence

can explain animal species’ resurgence following near extinc-

tion (Borschev & Filippov, 2004). ABMs are uniquely

equipped to shed light on such phenomena and countless other

applications involving interacting individuals.

Perhaps because of their ability to simulate large-scale

dynamics with bottom-up processes, ABMs are popular in eco-

nomics (e.g., Tesfatsion & Judd, 2006), sociology (Bruch &

Atwell, 2015; Macy & Willer, 2002), political science (Ceder-

man, 2005; Johnson, 1999), and some applied sciences (e.g.,

artificial intelligence; Beer, 1995; Gasser, Braganza, &

Herman, 1987; Wooldridge, 2003). In psychology, however,

ABMs continue to exist at the field’s margins (see Goldstone

& Janssen, 2005; Smith & Conrey, 2007) perhaps because

psychologists view them as difficult to implement and see their

results as only reflecting the assumptions of their programmers

(you get out what you put in).

This article aims to address these concerns and to pique

social psychologists’ interest in ABMs. We provide examples

of classic and recent ABMs that illuminate social behavior,

compare modeling to other methods in social psychology, and

give concrete advice to social psychologists wishing to

implement their own ABMs. Although there are ABMs that

simulate nonsocial events (e.g., weather patterns or artificial

intelligence), we focus on models of social processes. We hope

to provide an in-depth but accessible introduction to ABM for

social psychologists.

Social Psychological Questions Addressed
by ABMs

Schelling’s (1971) model of segregation addresses one of

social psychology’s core questions: Why do individuals segre-

gate based on race? ABMs also address other important ques-

tions: What is the basis of group formation? What is the best

strategy for maintaining cooperation? Why do couples pair off

in terms of attractiveness? These questions are well suited to

ABM because they involve individual behaviors interacting

to produce surprising collective phenomena.

What Is the Basis of Group Formation?

Social identity is the dominant framework for understanding

why people split into “us” versus “them”: People with similar

race, religion, or culture form groups, which then square off

against each other (Tajfel, 1982). However, these social identi-

ties can only emerge once people separate into groups. This

logic creates a regress in which groups require identity but

identity requires groups. To escape this chicken–egg dilemma,

Gray and colleagues (2014) examined whether groups could

form in a completely homogeneous population without any

identities. The authors programmed agents with only two sim-

ple characteristics: reciprocity (the tendency to cooperate with

those who have previously cooperated with you) and transitiv-

ity (the tendency to share your network’s social preferences)—

each of which was a well-established social tendency (Holland

& Leinhardt, 1971; Levine, 1998). The model’s results

revealed robust group formation even though agents had no

sense of us or them, suggesting that groups can form even with-

out identity (see Figure 2).

What Is the Best Strategy for Maintaining Cooperation?

Real-world questions of cooperation are captured by the

“prisoner’s dilemma,” in which two people each have the

Figure 1. Visualization of Thomas Schelling’s (1971) segregation
model at its commencement (top panel) and conclusion (bottom
panels). When agents have a 15% threshold for similarity (left panel),
only minimal segregation occurs. However, 30% (middle panel)
and 75% (right panel) thresholds produce striking segregation.
Retrieved from http://nifty.stanford.edu/2014/mccown-schelling-
model-segregation/

Figure 2. Visualization of Gray and colleagues’ (2014) model
displayed at Round 1 (left panel) and Round 300 (right panel).
Retrieved from online simulation at http://www.mpmlab.org/groups/
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choice to cooperate or defect. The group payoff is maximized

when both people cooperate, but each player is made better off

individually by defecting—capturing the essential tension of

social dilemmas. Political scientist Robert Axelrod asked peo-

ple to program agents with different strategies for repeated

prisoner dilemma games (e.g., always cooperate, always

defect, copy your partner’s past behavior) and then paired these

agents with each other in a round-robin design (Axelrod, 1980;

Axelrod & Hamilton, 1981). As long as the agents engaged in

repeated interactions, the winner was a very simple agent—

“tit-for-tat”—which began with cooperation and then copied its

partner’s previous decision. Axelrod’s ABM was important

because it revealed a simple route for the emergence of coop-

eration, even in complex societies.

More recently, Bear and Rand (2016) developed an ABM to

explore the psychological basis of cooperation. Agents played

either one-shot or repeated prisoner’s dilemmas. They could

engage in two different kinds of cognition: a low-cost general-

ized intuitive response or a higher cost calculated response that

could tailor its choice to whether the game was one-shot or

repeated. The results showed that—given a high likelihood of

repeated interaction—the best strategy was to intuitively coop-

erate and deliberatively defect when the game was one-shot.

This ABM therefore offered an evolutionary explanation for

why people sometimes cooperate when they can get away with

defection.

Do Couples Seek Out Similarly Attractive Partners?

Members of a romantic couple tend to be similarly attractive,

but it is not immediately clear why. Although some believed

that people intentionally search for their attractiveness

“match” (Huston, 1973; White, 1980), Kalick and Hamilton

(1986) used an ABM to test whether matching could occur

even if all people preferred maximally attractive partners.

Heterosexual male and female agents were assigned an attrac-

tiveness score from 1 to 10 and were repeatedly paired up.

Pairs asked each other on “dates,” and if both agreed, they left

the pool, otherwise they were paired up with new agents.

Kalick and Hamilton ran two variations of the model: one

in which people wanted maximally attractive partners (moti-

vated for supermodels) and another where people wanted

similarly attractive partners (motivated for matching). In the

“motivated for matching” condition, agents’ attractiveness

was very highly correlated (r ¼ .85) with their partners’—sig-

nificantly higher than what actually occurs in real life. In

contrast, agents who were “motivated for supermodels” had

their attractiveness moderately correlated (r ¼ .5) with their

partners’—nearly the same correlation as in real life (Critelli

& Waid, 1980). This moderate matching occurred because

when everyone preferred the prettiest people, the prettiest

ended up together first, and the less pretty were left to pair

up afterward. As with many ABMs, people’s individual

preferences (for attractive partners) led to unexpected collec-

tive patterns (attractiveness matching).

Emergence

Agents in the previous examples were not programmed to seg-

regate, to form social groups, to maintain stable cooperation, or

to find partners of a similar attractiveness. Instead, these group

phenomena arose via emergence—when the aggregation of

small-scale individual behavior yields qualitatively different

collective behavior. Emergence lies at the heart of almost any

complex phenomenon, from traffic jams, to the wetness of

water, to the neural basis of consciousness (Bassett & Gazza-

niga, 2011; Tononi, Sporns, & Edelman, 1994). For example,

while no individual neuron is conscious, their collective inter-

actions yield human consciousness. Likewise, Schelling’s

model revealed that segregation could arise from the innocent

decisions of relatively egalitarian individuals.

Historically, the impact of ABMs has been proportional to

the amount of emergence they reveal—the apparent disconnect

between individual and collective behavior. For example, the

models from the previous section feature large-scale phenom-

ena that are difficult to predict from individuals’ behavior.

Importantly, in explaining complex group-level phenomena

with simple individual-level rules (see Smaldino, 2014), good

ABMs typically reduce complexity—leading to these two

complementary maxims for research with ABM:

Maxim for good ABMs: Reduce complexity by revealing

how higher level phenomena emerge from the repeated

interaction of simple rules.

Maxim for bad ABMs: Introduce complexity by taking a

simple phenomenon and inventing complicated rules to

explain it.

These maxims serve as useful criteria in evaluating whether

ABMs add to or detract from a paper. The very best ABMs are

explainable in plain prose and should reveal the emergence of

complex or surprising phenomena using simple principles.

Conversely, bad ABMs take a straightforward, intuitive phe-

nomenon and complicate it with unjustified assumptions and

abstruse mathematics. These maxims also help to address two

traditional criticisms of ABMs.

Reductionism

ABMs are often seen to be reductionist, destroying the special-

ness of psychological processes by explaining them with sim-

ple agent behaviors. For example, claims of reductionism

have been leveled against research linking love to hor-

mones—if hormones are involved in love, is love “just” hor-

mones? But fears of reductionism ignore the possibility of

emergence, and the fact that all phenomena are embedded in

a chain of lower and higher level events. Even if love can be

“reduced” to hormones, there is still an undeniably powerful

feeling of love, a higher level emergent experience that moti-

vates people to write sonnets and run through the airport at the

last minute. Emergence also provides a defense against claims

of reductionism in ABMs. Even if reciprocity and transitivity
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are sufficient conditions for group genesis (Gray et al., 2014),

groups themselves prompt powerful feelings of solidarity and

important behaviors—from war to religious movements—

which cannot be reduced to these lower level processes.

You Get Out What You Put In

Critics of ABM have also claimed that the results of ABMs are

closely tied to researchers’ decisions in setting their models’

parameters. In some sense, this is a strength of ABMs: Unlike

in the laboratory or the field, the behavior of agents can be iso-

lated and specified with precision—which forces researchers to

explicitly formulate their theories. ABM-derived hypotheses

are therefore decidedly falsifiable, with no ambiguity about

what a model should predict. Of course, this level of experi-

menter control has the potential to make the final outcome

seem obvious—but again, this criticism holds primarily with

models that fail to show emergence. In Schelling (1971), there

is nothing obvious about a slight preference for similarity caus-

ing rampant segregation, and in Gray and colleagues (2014),

there is nothing obvious about two simple rules of interac-

tion—reciprocity and transitivity—leading to stable grouping

within homogenous populations.

Comparing ABM to Other Methods

In addition to the theoretical framework of emergence, ABMs

offer several methodological advantages that complement

other methods. In comparison to laboratory experiments, field

studies, or archival investigations (including “big data” analy-

sis), ABMs offer a unique combination of experimental control

and massive scale, along with the ability to capture nonlineari-

ties and underlying mechanisms. However, like any tool in a

social psychologist’s toolbox, ABMs come with limitations,

of which external validity is most notable. This drawback is

mitigated by supplementing ABMs with other tools—such as

laboratory or field experiments—in multimethod investiga-

tions. Table 1 shows a comparison of the relative advantages

and disadvantages of ABMs compared to other methods.

Control and Realism

In psychology, maximum control is often ascribed to experi-

mental lab paradigms featuring random assignment, but even

experiments have their limits. Participants may respond differ-

ently to experimental manipulations based on their cultural

background (Hong et al., 2003), their religious upbringing

(Shariff, Willard, Anderson, & Norenzayan, 2016), or even

their transient mood (Forgas, 1995). Despite the flexibility of

experiments, they are also limited by questions of ethics and

feasibility—there is only so much that participants can do (or

be asked to do) in the lab. In contrast, ABMs offer exceptional

control: Agents in computational models can be instructed to

perform almost any initial behaviors and will follow their

instructions with complete uniformity. This control also

remains high over indefinitely large samples and infinitely long

simulations.

The trade-off to ABMs’ high control is a low degree of

external validity. For example, the agents in Schelling’s model

moved neighborhoods without incurring the financial or social

costs inherent in relocation. Kalick and Hamilton’s date choice

model similarly assumed that individuals who accept dates per-

manently leave the dating pool, which seldom occurs in real

life. Because of these shortcomings, ABMs are most effective

when used in conjunction with laboratory or field experiments,

which can use human subjects to validate an ABM’s

parameters (as in Luhmann & Rajaram, 2015) or its causal

pathways (see Bear & Rand, 2016; Kalick & Hamilton, 1986).

Scale

One clear advantage of ABMs over other methods is statistical

power. Obtaining sufficient N can prove difficult, as research-

ers struggle against a subject pool deadline or limited funding

for participants. Even in field studies, researchers may obtain

large sample sizes, but these samples may be incomplete or fea-

ture troublesome attrition. In ABMs, sample size is simply a

parameter specified in the model. ABMs can also operate over

any amount of time and sample at any rate. Of course, large N,

long-term and high sampling-rate ABMs may take longer to

run, but this typically means extras days and not years (and

computing superclusters can substantially reduce this time).

The critical point is that by analyzing large samples over an

extended time, ABMs can reveal large-scale societal emer-

gence (e.g., segregation and homophily), which is often impos-

sible to observe with more traditional paradigms (and even

with “big data” analyses; Lewis, 2015).

Nonlinear Dynamics

Most social psychology paradigms often only assess the beha-

vior of one group at one specific time point, but social pro-

cesses unfold dynamically across time and individuals.

Table 1. Comparing Agent-Based Modeling to Other Methods.

Research Aspect Field Studies Lab Experiment Archival Studies ABMs

Control and realism Low control; high realism Medium control; medium realism Low control; medium realism High control; low realism
Scale Medium to high scale Low to medium scale High scale High scale
Nonlinear dynamics Medium visibility Low visibility Medium visibility High visibility
Mechanism Medium clarity High clarity Low clarity High clarity

Note. ABMs ¼ agent-based models.
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Considering conformity, People generally follow behaviors

more as they become more common (Asch, 1956; Boyd &

Richerson, 1985; Henrich & McElreath, 2003), except for non-

conformists who follow the behavior less (Efferson, Lalive,

Richerson, McElreath, & Lubell, 2008). As a result, conformity

follows an oscillating pattern of increases, decreases, and

stability, which is difficult to fully capture with static experi-

ments (Jarman et al., 2015). The spread of social attitudes

(Nowak, Szamrej, & Latane, 1990) and stereotypes (Kashima,

2000) and the process of group formation (Halberstadt et al.,

2016; Jackson, Halberstadt, Jong, & Feldman, 2015) also fol-

low nonlinear patterns. In fact, there are few social phenomena

that behave truly linearly over time, given the dynamic nature

of social–cultural interactions and the unpredictable impacts of

initial conditions (Vallacher & Nowak, 1999). ABMs are an

ideal method for modeling these nonlinear processes, as they

can include millions of time points and multiple runs (Abbott,

1988).

Mechanism

With their high controllability, ABMs are often able to isolate

and directly manipulate the discrete psychological processes

underlying complex social phenomena. Of course, psychologi-

cal mechanisms can take many forms and can exist on many

levels of analysis. ABMs are best suited to study how manifes-

tations of individual (or dyadic) behavior influence larger scale

group-level phenomena, such as when a slight individual desire

for similarity catalyzes neighborhood segregation (Schelling,

1971). One question is whether the mechanism provided by

ABM is the same in real life: Just because a mechanism suffi-

ciently generates some outcome does not mean this mechanism

necessarily or always generates the outcome. However, reveal-

ing even likely mechanisms is valuable for both basic research

and policy decisions.

Building an ABM

After being inspired by ABM’s rich history and unique metho-

dology, readers might want to try their hand at model building.

While training in ABMs is absent from most PhD programs in

social psychology, many articles have linked ABMs to specific

research questions (e.g., Axelrod, 1997; Carley, 2002; Schel-

ling, 1971) with others providing more detailed, technical

guides (e.g., Smith & Conrey, 2007). An edited volume by Tes-

fatsion and Judd (2006) includes chapters on ABM’s history

and its applications in economics as well as an introductory

appendix with extensive practical tips for newcomers. Gilbert

and Troitzsch (2005) provide a broader overview of ABM in

the social sciences. Epstein (2008) includes a discussion of

ABM’s benefits over other methodologies, and Nowak

(2004) gives an in-depth overview of emergence in ABM and

the utility of simple models for simulating complex pro-

cesses. Journal issues focusing on ABMs have included

American Behavioral Scientist (Vol. 42, August 1999), Sci-

ence (Vol. 284, April 1999), and the Proceedings of the

National Academy of Sciences (Vol. 99, Supplement 3,

2002). Finally, websites like “OpenABM” (www.openab

m.org) and “Agent-Based Models” (www.agent-based-mod

els.com) provide courses, videos, and code libraries of pre-

vious models from which researchers can adapt code.

Aspiring ABMers must develop some level of computer

programming. Python, MATLAB, R, and C have often been

previously used to program ABMs. However, there are also

more accessible tools available for those who do not have time

to master a traditional programming language. The software

package Netlogo (http://ccl.northwestern.edu/netlogo/; Tisue

& Wilensky, 2004) is free and relatively simple and provides

the code and explanation behind several of the models in this

article, such as the predator–prey model, the flocking model,

and Schelling’s segregation model. Netlogo also comes with

an extensive manual for researchers to learn the programming

language as well as practical tips for building an ABM. Other

tools that offer ABM training include “Swarm” (Minar, Burkhart,

Langton, & Askenazi, 1996), which requires some program-

ming ability (C or Java) but comes with a tutorial and example

code to get new users started, and “Flexible Large-Scale Agent

Modeling Environment,” which is a more accessible computa-

tional environment, since models are specified in XML.

“Cellular Automaton Explorer” offers a manageable interface

to program simple ABMs and is particularly well suited for

demonstration purposes (see, e.g., a popular Wolfram demon-

stration: http://demonstrations.wolfram.com/CellularAutomato

nExplorer/).

To augment these resources, we provide a seven-step con-

ceptual ABM algorithm, with each step illustrated by Schel-

ling’s (1971) segregation model and Gray and colleagues’

(2014) grouping model. For more examples of the seven steps,

we also provide a substantial (though not exhaustive) supple-

mental table with 35 additional ABMs on social–psychology

topics ranging from the dynamics of online chatting to deci-

sions about expressing pain. This collection offers insight into

how other researchers have translated their research question

into simulations.

Some of these steps do not apply to all models or all research

questions, and so researchers should feel free to adapt them to

their own needs. Nevertheless, the steps provide a useful guide

for exploring social processes and for creating simulated

worlds with the potential for collective emergence.

Step 1: What are your world’s dimensions? Is your world flat or

multidimensional? Schelling’s segregation model is two

dimensional (2-D)—like land—but group formation models

are often multidimensional to represent complex social spheres

(although these models often still involve 2-D visualizations to

present data). In choosing the dimensionality, researchers must

consider if the actions of one agent necessarily constrain the

behavior of other agents—the more the mutual constraints, the

lower the degrees of freedom and the lower the dimensionality

(e.g., if I move across town from you, I not only move further

from you but also your neighbor). Note that dimensions only

apply to models where interactions between agents are
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governed by space. In network models, for example, there are

no dimensions.

Application of Step 1. In Schelling’s model, agents were

paired in a 2-D space (as illustrated in Figure 1), while in Gray

and colleagues’ grouping model, agents interacted in a multidi-

mensional space where one agent’s position did not impede

other agents’ movement.

Step 2: How do agents meet? Behavior in ABMs is usually

divided into rounds, and on each round, some number of agents

interact with each other. One question is how to select which

agents interact. Do they interact only with their neighbors, or

can they be paired up with any other agent in the simulation?

These choices stem in part from the dimensionality (see Step

1), but there are other choices within each of these sets. In some

models, agents can avoid interactions entirely—perhaps

because they are “unpopular”—while in others, agents can

interact with more than one agent. In the latter case, what rules

will govern interaction order? And will agents prioritize some

interaction partners over others? Will interactions be governed

randomly or according to a rule (or a bit of both)? The answers

to these questions (along with your world’s dimensionality)

will determine the network you choose for your model. Three

popular networks are displayed in Figure 3.

Application of Step 2. Since Schelling’s segregation model

focused on neighborhood dynamics, he programmed agents

to only interact with their next-door neighbors. In contrast,

Gray and colleagues’ agents could interact with any other agent

in the model, though they were more likely to interact with

“friends” than with “enemies”—and they only interacted with

one partner per round.

Step 3: How do agents behave? When agents meet, what do they

do? Do they ask other agents on dates (Kalick & Hamilton,

1986)? Do they share food (Jahanbazi, Frantz, Purvis, Purvis,

& Nowostawski, 2014)? In many social science ABMs, agents

repeatedly play economic games, which allows for experimen-

ters to mathematically approximate real social behavior (Perc

& Szolnoski, 2010). For example, prisoner’s dilemmas can rep-

resent people’s decisions to either act selfishly or coopera-

tively. In any ABM, researchers should ensure that agents’

behavior approximates the type of social behavior of interest,

which often involves programming in a degree of randomness

for variability.

Application of Step 3. In Schelling’s model, agents decided

whether to stay in their neighborhood or to move to another

vacant space on the grid. Gray and colleagues’ agents played

a prisoner’s dilemma game.

Step 4: What is the payoff? Payoffs correspond to what agents

get out of an interaction and can represent money, happiness,

or social bonds. In some ABMs, there is no payoff system, but

in many ABMs that feature interactive decision-making, pay-

offs are determined by considering an agent’s decisions and

those of that agent’s partner(s). In a prisoner’s dilemma, for

example, an agent’s decision to cooperate yields a different

payoff depending on whether their partner chooses to also

cooperate or to defect.

Application of Step 4. Schelling’s agents received no payoff,

since there was no interactive decision-making. Gray and col-

leagues’ agents, however, received a payoff that depended on

their prisoner’s dilemma decisions.

Step 5: How do agents change? Agents can change in a number

of ways throughout the simulation. In many economic models,

agents “remember” the way their counterpart treated them and

adjust their behavior in future rounds. In evolutionary models,

each round will end with some agents dying (often if they have

received a low payoff) or reproducing (often if they have

received a high payoff). In mating models, agents can pair up

(or break up). In models where agents form groups, agents can

become closer to some agents and move further from others.

Application of Step 5. Both Schelling’s and Gray and col-

leagues’ agents changed via movement, moving to a randomly

selected grid space (Schelling) or closer to those who treated

them nicely (i.e., their friends; Gray and colleagues).

Figure 3. In the lattice network (A), agents only interact with their neighbors (applicable to residential models). In the small-world network (B),
cross-network connections compliment neighboring connections, so that any two agents are connected by only a few degrees of separation
(applicable to almost any social network). In the scale-free network (C), densely connected agents are more likely to generate new connections
compared to sparsely connected agents (applicable to the Internet and citation networks).
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Step 6: How long does your world last? As mentioned earlier, one

of the major advantages of ABMs is their scale. Researchers

can collect data for any specified amount of time, meaning that

an ABM investigation will almost never be underpowered.

However, researchers should set a theoretically meaningful

length to their model. In some cases, models should run until

they have reached some form of equilibrium. In other cases,

models should run for a length that approximates some phe-

nomenon of interest (e.g., Luhmann & Rajaram’s, 2015, model

of collective memory) but still allows the researcher to conduct

analyses with adequate reliability. In either case, decisions are

limited only by (practically unlimited) computer storage space

and CPU speed.

Application of Step 6. Both Schelling’s and Gray and col-

leagues’ models ran until a point of equilibrium. In Schelling’s

model, this equilibrium was the point at which agents were no

longer moving across neighborhoods. For Gray and colleagues,

equilibrium represented the point at which agents had all

formed groups or group formation was impossible.

Step 7: What do you want to learn from your world? At the end of

the day, ABM is a theory testing and development paradigm

(Smith & Conrey, 2007) with independent and dependent vari-

ables. In the case of ABMs, independent variables (or

“parameters”) are customized by the experimenter, while

dependent variables are measured throughout the model or at

the model’s conclusion. If experimental hypotheses are con-

firmed, researchers should consider adding other independent

variables into the model as moderators. Using new variables

or situations to test the generalizability of a phenomenon is

often called a “robustness analysis,” and it can reveal surprising

new effects or nonlinearities.

Application of Step 7. Schelling’s central parameter was

agents’ desired similarity, while his dependent measures were

agents’ positions at the conclusion of the simulation. His find-

ing was that a relatively low rate of similarity seeking (*30%)

could produce relatively homophilous agent distributions at the

conclusion of the simulation.

In Gray and colleagues’ model of “us and them,” the central

parameters were agents’ tendency to show reciprocity and tran-

sitivity, and the central-dependent variable was group cluster-

ing. Varying parameters and measuring clustering revealed

how reciprocity and transitivity could produce stable grouping.

Gray and colleagues also examined a moderating role for

“trust”—the baseline tendency for cooperation or defection.

Conclusion

ABM is not a new technique, but its promise and power are

often overlooked by social psychologists. We believe that

there are two assumptions that have hindered their increased

use. The first is that ABMs are difficult to learn or understand.

However, good ABMs should be easy to conceptually under-

stand, and the resources discussed above should make their

implementation easier. The second assumption is that ABMs

fail to generate new knowledge. As we suggest, good ABMs

harness the power of emergence, in which higher level phe-

nomena derive from the simple behavior of agents. As with any

method, ABM is imperfect, but it does offer social psycholo-

gists a powerful way to implement precise hypotheses and to

explore emergence. Not only can researchers build whole

worlds to examine social processes, they also can sample from

these worlds over thousands of generations to yield unprece-

dented insight into collective behavior. Whether studying rela-

tionships, stereotypes, culture, attitudes, emotions, religion, or

the self, social psychologists should consider adding ABM to

their methodological toolbox.
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Note

1. While we use the term “agent-based modeling” in this article, the

terminology around agent-based model is diverse and potentially

confusing. Alternative terms include “multiagent systems,”

“agent-based simulation,” “agent-based computing,” and

“individual-based modeling.”
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